مطلب درباره ی ریاضی
مطالب متنوع علمی و اخلاقی و تربیتی واطلاعات عمومی وتاریخی و آموزشی ریاضی
به دنیای فراکتال ( برخال ) خوش آمدید
در اين مقاله سعي شده است بيان مختصري از بحث گسترده فركتال ارائه شود.
اگر بخواهيم از ديد كلي به بحث فركتال نگاه كنيم آن را مي توان به 3 دسته تقسيم بندي كرد :
1 - هندسه فركتال : در اين قسمت از ديد رياضي به فركتال نگاه مي شود كه بيشتر مورد توجه رياضي دان ها قرار گرفته اما پايه هاي قسمت هاي بعدي نيز مي باشد ، و تا با عناصر اصلي فركتال و چگونگي ايجاد اين فرم آشنا نشويم نمي توان فرم هاي مختلف و حجم هاي مختلف را شناسايي كرد.
2 - فرم فركتال : قسمت دوم اين مقاله است ، با توجه به اينكه ،محصول هندسه فركتال فرمي است كه دقيقاً آن مشخصه هاي هندسي مربوطه را دارد . در اين بخش فرم فراکتال ها به ما چه می گویند؟ هايي همچون فرم هاي درخت ، فرم هاي مندلبرت ، فرمهاي موجود در طبيعت ، ايجاد فرم هاي رندوم ( Random fractal ) ، خود متشابهي ( self similarity ) ، فركتال در نقاشي ( آثار نقاشاني چون جكسون پالاك ) و … مورد بررسي قرار خواهد گرفت .
3 - حجم فركتال ( فركتال در معماري ) : نتيجه فرم هاي مختلف مي تواند به يك اثر معماري منتج شود لذا در اين بخش حجم هاي فركتالي و آثار معماري مطرح مي شود .
اشكال فركتالي چنان با زندگي روزمره ما گره خورده كه بسيار جالب است . با كمي دقت به اطراف خود، مي توان بسياري از اين اشكال را يافت . از گل فرش زير پاي شما و گل كلم درون مغازه هاي ميوه فروشي گرفته تا شكل كوه ها، ابرها، دانه برف و باران، شكل ريشه، تنه و برگ درختان و بالاخره شكل سرخس ها، سياهرگ و حتي مي توان از اين هم فراتر رفت : سطح كره ماه ، منظومه شمسي و ستارگان .
البته در بخش فرم هاي فركتال اين موضوع بيشتر مشهود است به طوري كه بسياري از فرمهاي خلقت داراي ساختاري فركتال هستند .
اين روزها از فراکتالها به عنوان يکي از ابزارهاي مهم در گرافيک رايانه اي نيز نام مي برند، اما هنگام پيدايش اين مفهوم جديد بيشترين نقش را در فشرده سازي فايلهاي تصويري بازي می کنند .
فركتال از منظر هندسي
هندسه فرکتالي يا هندسه فرکتال ها پديده ايست که چندي پيش پا به دنياي رياضيات گذاشت .
واژه فرکتال در سال 1976 توسط رياضيدان لهستاني به نام بنوئيت مندلبرات وارد دنياي رياضيات شد.
او در سال 1987 پرفسوري خود را در رشته رياضيات گرفت.
مندلبرات وقتي که بر روي تحقيقي پيرامون طول سواحل انگليس مطالعه مي نمود به اين نتيجه رسيد که هر گاه با مقياس بزرگ اين طول اندازه گرفته شود بيشتر از زماني است که مقياس کوچکتر باشد .
از لحاظ واژه مندلبرات انتخاب اصطلاح فرکتال ( fractal ) را از واژه لاتين fractus يا fractum ( به معني شکسته ) گرفت تا بر ماهيت قطعه قطعه شونده كه يكي از مشخصه هاي اصلي اين فرم است ،تاکيد داشته باشد .
فرهنگستان زبان هم واژه برخال را تصويب کرده و همچنين براي واژه فرکتالي واژه برخالي را تصويب کرده است.
واژه فركتال به معناي سنگي است كه به شكل نامنظم شكسته شده باشد .
فرکتال از ديد هندسي به شيئي گويند که داراي سه ويژگي زير باشد :
1-اول اينکه داراي خاصيت خود متشابهي باشد يا به تعبير ديگر self-similar باشد .
2-در مقياس خرد بسيار پيچيده باشد .
3- بعد آن يك عدد صحيح نباشد ( مثلاً 1.5 ) .
براي درک بهتر نسبت به مشخصات بالا در فرم هندسي ، بد نيست نمونه اي كه شايد تا كنون با آن برخورد كرده باشيد مطرح شود :
تصوير بالا ( يك كبوتر ) يك فرم هندسي است كه دقيقاً با تعاريفي كه در تعريف فركتال بيان شد، منطبق است يعني هم داراي خاصيت خود متشابهي و پيچيدگي در مقياس خرد و نيز عدم داشتن بعد صحيح . تصوير بالا داراي بعدي بين عدد 2 و 3 است.
حال به بررسي هر يك در زير پرداخته شده :
خاصيت خود متشابهي فرکتا لها
شيئي را داراي خاصيت خود متشابهي مي گوييم : هر گاه قسمت هايي از آن با يك مقياس معلوم ، يك نمونه از كل شيئي باشد .
ساده ترين مثال براي يك شيئ خود متشابه در طبيعت گل كلم است كه هر قطعه ي كوچك گل كلم متشابه قطعه بزرگي از آن است .
همين طور درخت كاج يك شيئ خود متشابه است ،چرا كه هر يك از شاخه هاي آن خيلي شبيه يك درخت كاج است ولي در مقياس بسيار كوچكتر . همچنين در مورد برگ سرخس نيز چنين خاصيتي وجود دارد .
رشته كوه ها ، پشته هاي ابر ، مسير رودخانه ها و خطوط ساحلي نيز همگي مثال ها يي از يك ساختمان خود متشابه هستند .
در تصوير سمت راست بزرگ شده دايره تصوير سمت چپ ديده مي شود
نمونه ای از خود متشابهي در شكل زير نیز ديده مي شود :
پيچيدگي در مقياس خرد
در اين بخش نرم افزار Fractal Explorer ارائه مي شود كه مي توانيد آن را دانلود كنيد. در اين نرم افزار مدل هاي آماده از فرم هاي مندلبورت نيز وجود دارد كه داراي سيستم پيچيده اي در مقياس خرد است .
اين بخش در فركتال ها بسيار مهم است به طوري كه خيلي از فرمها با اين مشخصه ، از فرم هايي با هندسه اقليدسي جدا مي شوند.
- محاسبه بعد فرکتال ها:
اگر بگوييم بعد خط ، برابر يک باشد
و نيز بعد صفحه ، برابر دو باشد .
همچنن بعد فضا با عدد سه معرفي شود
اما فرکتالها بر خلاف همه ي اينها بعد صحيح ندارند . بعد فرکتالها يک عدد کسري ميباشد
وقتي که گفته ميشود بعد يک فرکتال 1.2 مي باشد اين بدين معني است از خط پيچيده تر و از صفحه سادتر است .
محاسبه اين بعد از يك سري فرمول هاي لگاريتمي بدست مي آيد كه بررسي آن از حوصله اين بحث خارج است. در اشكال زير تنها به عدد بدست آمده اشاره مي شود .
شکل روبه رو يکي از نمونه هاي مشهور فرکتال ها است . که به خم وان کخ شهرت دارد .
بعد بدست آمده برابر 1.261859 مي باشد
خم وان کخ با فراکتال ها به ما چه می گویند؟ بعد 1.2
مجموعه کانتور با بعد 0.630929
فرکتالي با بعد 1.58496
در پايين از كار هاي لوكربوزيه كه محاسبه ابعاد حالت هاي زير(از چپ به راست ) آمده است . همانطور كه ديده مي شود شكل سمت چپ داراي بعد بيشتري نسبت به شكل سمت راست است .
اما در عين پيچيدگي كه فرم هاي فركتال دارند نبايد فراموش كرد كه فركتال يك هندسه است.و از انجام محاسبات هندسي بدست مي آيد . اين بخش را بانرم افزاري در ذيل اين مورد به پايان مي برم .
در اين نرم افزار كه بسيار ساده و داراي يك محاسبه منطقي است پارامتر هاي r,s,teta,e,f در يك ماتريسي قرار گرفته اند كه با تغيير هريك فرم خاصي را ايجاد مي كند .
شرح اين پارامتر ها از حوصلۀ بحث خارج است و تنها به نتيجه كار مي پردازيم .
براي مثال پس از دانلود نرم افزار دكمه Run را فشار دهيد سپس تغييراتي كه من در رديف T4 انجام داده ام در هر مرحله انجام دهيد.
به نتيجه جالبي مي رسيد و اينكه بسياري از فرمهارا مي توان با تغيير اين پارامتر ها رسم نمود.
فركتالهایی از مغز
میکنید راهی برای آمیختن هنر و نمودارهای امواج مغزی وجود داشته باشد؟
«بیل اسکات» از انستیتوی روانشناسی و نورولوژی UCLA چنین راهی را پیدا کرده است او فناوریای را ابداع گرده است که به کمک آن میتوان الکتروآنسفالوگرامها ( EEG یا همان نوار مغزی) را به فرکتالهای رنگی تبدیل کرد. او از این روش با موفقیت در یک روش درمانی به نام پسخوراند زیستی یا بیوفیدبک استفاده میکند.
یل اسکات از پسخوراند زیستی برای درمان اعتیاد و اختلالات اضطرابی استفاده میکند.
برخال
بَرخال (فرکتال، فراکتال، fractal)، ساختاری است که هر جزء از از آن با کلش متشابه است.
الگوهای رویش برخالی
ایده خود متشابه در اصل توسط لایبنیتس بسط داده شد. او حتی بسیاری از جزئیات را حل کرد. در سال ۱۸۷۲ کارل وایرشتراس مثالی از تابعی را پیدا کرد با ویژگیهای غیر بصری که در همه جا پیوسته بود ولی در هر جا مشتق پذیر نبود. گراف این تابع اکنون برخال نامیده می شود. در سال ۱۹۰۴ هلگه فون کخ به همراه خلاصهای از تعریف تحلیلی وایرشتراس ، تعریف هندسیتری از تابع متشابه ارائه داد که حالا به برفدانه کخ معروف است. در سال ۱۹۱۵ واکلو سرپینسکی مثلثش را و سال بعد فرشاش (برخالی) را ساخت. ایده منحنیهای خود متشابه توسط پاول پیر لوی مطرح شد او در مقاله اش در سال ۱۹۳۸ با عنوان «سطح یا منحنیهای فضایی و سطوحی شامل بخشهای متشابه نسبت به کل» منحنی برخالی جدیدی را توصیف کرد منحنی لوی c. گئورگ کانتور مثالی از زیرمجموعههای خط حقیقی با ویژگیهای معمول ارائه داد. این مجموعههای کانتور اکنون بهعنوان برخال شناخته میشوند. اواخر قرن نوزدهم و اوایل قرن بیستم توابع تکرار شونده در سطح پیچیده توسط هانری پوانکاره ، فراکتال ها به ما چه می گویند؟ فلیکس کلاین ، پیر فاتو و گاستون جولیا شناخته شده بودند. بااین وجود بدون کمک گرافیک کامپیوتری آنها نسبت به نمایش زیبایی بسیاری از اشیایی که کشف کرده بودند، فاقد معنی بودند. در سال 1960 بنوا مندلبرو تحقیقاتی را در شناخت خود-متشابهای طی مقالهای با عنوان «طول ساحل بریتانیا چقدر است؟ خود متشابهای آماری و بعد کسری» آغاز کرد. این کارها بر اساس کارهای پیشین ریچاردسون استوار بود. در سال ۱۹۷۵ مندلبرو جهت مشخص کردن شئی که بعد ((هاوسدورف بیسکویچ)) آن بزرگتر از بعد توپولوژیک است کلمه برخال راایجاد کرد. اواین تعریف ریاضی را از طریق شبیه سازی خاص کامپیوتری تشریح کرد.
بر خالها از نظر روش مطالعه به برخالهای جبری و بر خالهای احتمالاتی تقسیم می شوند. از طرف دیگر برخالها یا خود متشابه اند (self similarity) یا خود الحاق (self affinity) هستند. در مورد خود متشابهای شکل جز کپی دقیقی از شکل کل است و در همه جهات به نسبت ثابتی رشد می کند اما در خود الحاقی شکل جز در همه جهات به نسبت ثابتی رشد نمی کند. مثلاً در مورد رودخانهها وحوضههای آبریز بعد برخالی طولی متفاوت از بعد برخالی فراکتال ها به ما چه می گویند؟ عرضی است Vx = 0. 72-0. 74 و Vy = 0. 51-0. 52 (ساپوژنیکوف و فوفولو ،1993) لذا شکل حوضه آبریز کشیدهتر از زیر حوضههای درون حوضه است. به خود متشابهای همسانگرد ( isotropy) میگویند. به خود الحاقی ناهمسانگرد ( anisotropy) میگویند.
گسترش رو به رشد رویکرد مونوفراکتالی (تک برخالی) اخیر، دادهها را با مجموعه فراکتالی، بجای بعد منفرد فراکتالی توصیف میکند. این مجموعه طیف چند برخالی (multifractal spectrum) نامیده می شود و روش توصیف تغییر پذیری بر اساس طیف سنجی چند برخالی به آنالیز چند برخالی (multifractal analysis) معروف است (فریش و پاریسی، 1985). روش چند برخالی به اندازه خود متشابهای آماری (statistical self-similar) دلالت دارد که می تواند به صورت ترکیبی از مجموعههای متقاطع برخالی (interwoven fractal sets) مطابق با نمای مقیاس گذاری نمایش داده شود. ترکیبی از همه مجموعههای برخالی طیف چند برخالیی راایجاد می کند که تغییر پذیری و ناهمگنی متغیرمورد مطالعه را مشخص میکند. مزیت رویکرد چند برخالیاین است که پارامترهای چند برخالی می توانند مستقل از اندازه موضوع مورد مطالعه باشند. (Cox and Wang, 1993)
هندسه فراکتال.
Presentation on theme: "هندسه فراکتال."— Presentation transcript:
2 مقدمه واژه فراکتال مشتق از واژه لاتینی فراکتوس- به معنی سنگی که به شکل نامنظم شکسته خرد شده است- در سال ۱۹۷۵ برای اولین بار توسط بنوت مندل بروت مطرح شد. فراکتال ها شکل هایی هستند که بر خلاف شکل های هندسی اقلیدسی به هیچ وجه منظم نیستند. این شکل ها اولاً سر تاسر نامنظم اند، ثانیاً میزان بی نظمی آنها در همه مقیاسها یکسان است. با ملاحظه اشکال موجود در طبیعت، مشخص می شود که هندسه اقلیدسی قادر به تبیین و تشریح اشکال پیچیده و ظاهراً بی نظم طبیعی نیست. مندل بروت در سال ۱۹۷۵ اعلام کرده که ابرها به صورت کره نیستند، کوهها همانند مخروط نمی باشند، سواحل دریا دایره شکل نیستند، پوست درخت صاف نیست و صاعقه بصورت خط مستقیم حرکت نمی کند. جسم فراکتال از دور ونزدیک یکسان دیده می شود. به تعبییر دیگر خودمتشابه است.
3 وقتی که به یک جسم فراکتال نزدیک می شویم، می بینیم که تکه های کوچکی از آن که از دور همچون دانه ها بی شکلی به نظر می رسید، بصورت جسم مشخص در می آید که شکلش کم و بیش مثل همان شکلی است که از دور دیده می شود. در طبیعت نمونه های فراوانی از فراکتال ها دیده می شود. درختان ، ابرها، کوهها، رودها، لبه سواحل دریا، و گل کلم ها اجسام فراکتال هستند بخش کوچکی از یک درخت که شاخه آن باشد شباهت به کل درخت دارد. این مثال را می توان در مورد ابرها، گل کلم، صاعقه و سایر اجسام فراکتال عنوان نمود.
4 بسیاری از عناصر مصنوع دست بشر نیز بصورت فراکتال می باشند
بسیاری از عناصر مصنوع دست بشر نیز بصورت فراکتال می باشند. تراشه های سلیکان، منحنی نوسانات بازار بورس، رشد و گسترش شهرها و بالاخره مثلث سرپینسکی را می توان در این مورد مثال زد. در علم ریاضی فراکتال یک شکل مهندسی است که پیچیده است ودارای جزئیات مشابه در ساختار خود در هر مقیاسی است. میزان بی نظمی در آن از دور و نزدیک به یک میزان است. مثلث سرپینسکی یک مثلث متساوی الاضلاع است که نقاط وسط سرضلع آن به یکدیگر متصل شده اند. اگر این عمل در داخل مثلث های متساوی الاضلاع جدید تا بی نهایت ادامه یابد، همواره مثلث هایی حاصل می شوند که مشابه مثلث اول هستند.
5 تعریف فراکتال هندسه ی اقلیدسی – احجام کامل کره ها و هرم ها و مکعب ها واستوانه ها- بهترین راه نشان دادن عناصر طبیعی نیستند . ابرها و کوه ها و خط ساحلی و تنه ی درختان همه با احجام اقلیدسی در تضاد هستند و نه صاف بلکه ناهموار هستند و این بی نظمی را در مقیاس های کوچک نیز به ارمغان می آورند که یکی از مهمترین خصوصیات فراکتال ها همین است . این بدین معناست که هندسه ی فراکتال بر خلاف هندسه ی اقلیدسی روش بهتری را برای فراکتال ها به ما چه می گویند؟ توضیح و ایجاد پدیده هایی همانند طبیعت است .زبانی که این هندسه به وسیله ی آن بیان می شود الگوریتم نام دارد که با اشیا مرکب می توانند به فرمولها و قوانین ساده تری ترجمه و خلاصه شوند.
6 فرکتال از کلمه ی لاتین فراکتوس به معنی سنگی نامنظم شکسته و خرد شده است، گرفته شده است . اولین بار فرکتال را دکتر ماندلبروت طی نظریه ای که برای مسائل جهان هستی ارائه کرد و در این نظریه عنوان کرد که جهان هستی بعدی مابین ۲۳/۱-۳۴/۱۱ دارد و تمامی پدیده های طبیعی به نوعی فرکتالهایی می باشند در جهان هستی که برای ما ناشناخته اند. فراکتال ها انواع عناصری هستند که فرم فضایی آنها صاف نیست .بنابراین “نامرتب ” نامیده شده اند و این نامنظمی آنها به طور هندسی در راستای مقیاسهای گوناگون در داخل هرم تکرار می شوند .هر چیز طبیعی در اطراف ما در اصل نوعی فراکتال است . به این سبب که خطوط صاف و پلانها فقط در دنیای ایده آل ریاضی وجود دارد .در کنار این تئوری هر سیستم که بتواند به صورت هندسی متصور و تحلیل شود می تواند یک فرکتال باشد .جهان در فرم فیزیکی ( مادی ) کلی خود پر هرج و مرج ،ناممتد و نامنظم است اما در پس این اولین ذهنیت و گمان یک نوع دستوری نهفته است که منظم و دارای ترکیبی واضح است . بهترین راه برای تعریف یک فرکتال توجه به صفتها و نشانه های آن است یک فرکتال ” نامنظم ” است . این بدان معنی است که در آن هیچ قسمتی صاف نیست . فرکتال ” خود مشابه ” است و این بدین معنی است که ” اجزا ” شبیه کل هستند .
8 فرکتال (برخال) چیست؟ ما فرکتالها را هر روز میبینیم: درختها ، کوهها، پراکنده شدن برگهای پاییزی روی زمین ، ساحل دریا و … حالا به این تعریف دقت کنید: فراکتال تصویر هندسی چند جزیی است که میتوان آن را به تکه هایی تقسیم کرد که انگار هر تکه یک کپی از ” کل ” تصویر است . به سختی بتوان باور کرد که چیزی مانند فراکتالها بتواند اینقدر پیچیده و سخت باشد و در عالی ترین سطوح ریاضی به کار رود و در عین حال بتوان به تصویر یک سرگرمی خوب به آن نگاه کرد. اگر بخواهیم بترسانیمتان میتوانیم بگوییم که هندسه فراکتالی حرکت اشکال در فضا را ثبت میکند و یا ناهمواری دنیا و انرژی و تغییرات دینامیک آن را نشان میدهد ! اما راستش را بخواهید فراکتال چیز ساده ای است به سادگی ابرها یا شعله های آتش. واژه فرکتال از ریشه ای یونانی به معنای ” تکه تکه شده ” و”بخش بخش” آمده است و به نحوی تعریف ریاضی اش را در خود دارد.
9 اگر بخواهیم از دید کلی به بحث فرکتال نگاه کنیم آن را می توان به ۳ دسته تقسیم بندی کرد :
۱- هندسه فرکتال : در این قسمت از دید ریاضی به فرکتال نگاه می شود که بیشتر مورد توجه ریاضی دان ها قرار گرفته اما پایه های قسمت های بعدی نیز می باشد ، و تا با عناصر اصلی فرکتال و چگونگی ایجاد این فرم آشنا نشویم نمی توان فرم های مختلف و حجم های مختلف را شناسایی کرد.
10 ۲- فرم فرکتال : قسمت دوم این مقاله است ، با توجه به اینکه ،محصول هندسه فرکتال فرمی است که دقیقاً آن مشخصه های هندسی مربوطه را دارد . در این بخش فرم هایی همچون فرم های درخت ، فرم های مندلبرت ، فرمهای موجود در طبیعت ، ایجاد فرم های رندوم (Random fractal) ، خود متشابهی (self similarity) ، فرکتال در نقاشی ( آثار نقاشانی چون جکسون پالاک ) و … مورد بررسی قرار خواهد گرفت .
11 برج هرست-آمریکا ۳- حجم فرکتال (فرکتال در معماری): نتیجه فرم های مختلف می تواند به یک اثر معماری منتج شود لذا در این بخش حجم های فرکتالی و آثار معماری مطرح می شود .
12 اشکال فرکتالی چنان با زندگی روزمره ما گره خورده که بسیار جالب است
اشکال فرکتالی چنان با زندگی روزمره ما گره خورده که بسیار جالب است. با کمی دقت به اطراف خود، می توان بسیاری از این اشکال را یافت. از گل فرش زیر پای شما و گل کلم درون مغازه های میوه فروشی گرفته تا شکل کوه ها، ابرها، دانه برف و باران، شکل ریشه، تنه و برگ درختان و بالاخره شکل سرخس ها، سیاهرگ و حتی می توان از این هم فراتر رفت : سطح کره ماه ، منظومه شمسی و ستارگان . البته در بخش فرم های فرکتال این موضوع بیشتر مشهود است به طوری که بسیاری از فرمهای خلقت دارای ساختاری فرکتال هستند . این روزها از فراکتالها به عنوان یکی از ابزارهای مهم در گرافیک رایانه ای نیز نام می برند، اما هنگام پیدایش این مفهوم جدید بیشترین نقش را در فشرده سازی فایلهای تصویری بازی می کنند.
13 اما در هندسه : فرکتال از دید هندسی به شیئی گویند که دارای سه ویژگی زیر باشد: ۱-اول اینکه دارای خاصیت خود متشابهی باشد یا به تعبیر دیگر self-similar باشد. ۲-در مقیاس خرد بسیار پیچیده باشد. ۳-بعد آن یک عدد صحیح نباشد (مثلاً ۱.۵). برای درک بهتر نسبت به مشخصات بالا در فرم هندسی ، بد نیست نمونه ای که شاید تا کنون با آن برخورد کرده باشید مطرح شود :
14 تصویر زیر( یک کبوتر ) یک فرم هندسی است که دقیقاً با تعاریفی که در تعریف فرکتال بیان شد، منطبق است یعنی هم دارای خاصیت خود متشابهی و پیچیدگی در مقیاس خرد و نیز عدم داشتن بعد صحیح . تصویر بالا دارای بعدی بین عدد ۲ و ۳ است.
15 رابطه فراکتال و معماری مطالعه هندسه باید به طراح کمک کند به درک بهتری از جریان جزئیات در پیرامون ما و جهان طبیعی دست یابد.
16 انسانها در روزگار قدیم که در طبیعت می زیستند و مانند انسان دوره مدرن, با طبیعت بیگانه نبودند, معماریشان با نظم طبیعت بود. آنها به این دلیل که در طبیعت رشد میافتند, ضمیر ناخودآگاهشان نیز با نظم طبیعت- یعنی با نظم فراکتال- رشد میافت, در نتیجه مصنوعاتش نیز دارای نظم فراکتال می بود. خصوصیت فراکتالی یک ترکیب معماری در تسلسل جالب جزئیات است. این تسلسل برای حفظ جذابیت معماری لازم است. هنگامی که شخص به یک ساختمان نزدیک و سپس به آن وارد می شود همیشه باید مقیاس کوچکتر دیگری همراه با جزئیات جذاب وجود داشته باشد تا معنای کلی ترکیب را بیان کند که این یک ایده فراکتال است.
17 فراکتال در معماری معاصر
به دنبال بیگانگی انسان معاصر با طبیعت و دور شدن ساخته هایش از تشابه با ساختارهای طبیعت, معماران معاصر به دنبال نمود دادن ساختار فراکتال طبیعت در آثارشان هستند. هر چند که این هنوز آغاز راه است ولی ارتباطی جدیدی در زمینه طبیعت و معماری معاصر را نشان میدهد. ارتباطی که انسان مدرن آن را فراموش کرده بود.
18 معماری فراکتال در بافت ماسوله
شکل پلکانی و مطبّق روستا که در امتداد شیب کوه رو به جنوب و در طول خطوط توپوگرافی زمین کشیده شده است، پاسخگویی فعالیت های روزمره روستای ماسوله است. شاخص ترین ویژگی واحدهای ساختمانی تشکیل دهنده بافت تاریخی روستای ماسوله، همجواری آنهاست. این همجواری به گونه ای در نظر گرفته شده که باعث می شود تمام خانه ها زنجیروار به هم پیوسته، و در امتداد خطوط توپوگرافی زمین قرار داشته باشند. هر واحد مسکونی نیز بین یک تا چهار طبقه دارد که بیش از 70% آنها بصورت دوطبقه احداث شده اند. به طور معمول پایین ترین طبقه غیرمسکونی بوده و کاربرد آنها انبار و طویله بوده است. طبقات فوقانی نیز شامل فضاهای مسکونی بوده اند.. این معماری بگونه ای سازگار با شرایط اقلیمی، توپوگرافی و اجتماعی، فضاهای داخلی تقریباً یکسان را شامل شده اند. فراکتال را در ماسوله مي توان در معماري تزئينات (اجزاء ساختماني كه در خودشان با مقياس متفاوت تكرار مي شوند)، معماري ساختمانها و معماري بافت مي توان ديد، که این فراکتالی بودن ماسوله را با ویژگیهای فراکتالی و تطبیق محاسبه فرمی با نمونه خارجی نشان می دهیم.
20 اولین ویژگی فراکتال ها به ما چه می گویند؟ فراکتالی بافت ماسوله همان طوري كه در بالا نشان داده شده این است که یک خودتشابهی در مقیاسهای متفاوت ارائه می دهد که نشانگر ساختار پیچیده و پیوسته در مقیاس است. ساختار بافت ماسوله در تمام مقیاسها سلسله مراتبی از خیلی بزرگ به خیلی کوچک نشان می دهد و برای وصل شدن به شبکه دیگر باید از طریق واسطه ای به شبکه دوم (کوچکتر) انتقال یابد. بافت پيوندي بسيار نزديك با وضع طبيعي آن دارد. شيارهاي موجود در محل باعث شده اند كه تعداد مسيرهای طولي و موازي اين روستا كم بوده و جهت مستقيم نداشته باشند. امتداد مسيرهاي طولي كم است و اغلب به وسيله پيچهايي شكسته مي شود.. اين همان فراكتال است که در سطوح متقاوتي از لحاظ مقياس، با پيوندي قومي و محكم بر اساس يك طرح مناسب به هم متصل شده اند.
فراکتال ها Fractals
تشخیص فراکتال ها در بازار فارکس، دید تحلیلگر را بسیار قوی و منظم تر میکند.
با توضیحات این مقاله می توانید ساختار فرکتالی را آسوده تر تشخیص دهید.
فرکتال چیست؟
همه شما حتی چنانچه از هندسه هم چیزی ندانید بارها اسم آن را شنیده اید .
حتماً میدانید که «جبر , حساب و هندسه» سه شاخه کلیدی از ریاضی ها است .
همین سه تیتر در ریاضیات اساس گذار ترقی در تمام علم ها محسوب میشوند .
احتمال دارد همین احساس مسئولیتی که ریاضیات به تمام قسمت های علوم دارد آن را بسیار جدی و دشوار جلوه داده است .
در این میان هندسه نقش بسیار مهمی در شاخه های ریاضی دارد.
هندسه که می توان به آن علم بازی با اشکال لقب داد، پایه گذار دیگر شاخه های ریاضی است.
زیرا تمام قسمت های دیگر در ریاضیات و علوم دیگر تا به صورت مشهودی قابل بررسی دقیق و اصولی نباشد جای پیشرفت ندارند.
با این اوصاف، شایسته است به هندسه لقب «مادر بزرگ علوم» دهیم.
شاید اگر زمانی که حوزه اطلاعاتمان از اعداد تنها به مجموعه اعداد طبیعی منتهی می شد و معلم درس ریاضیات از ما می خواست تا ضلع سوم مثلث قائم الزاویه ای را که طول هر ضلعش یک سانتی متر است اندازه بگیریم نمی توانستیم عددی را با چنین ویژگی بیابیم.
هندسه اقلیدس:
سال ها پیش اقلیدس با حل مسئله ای نظیر (محاسبه قطر مربعی که هر ضلعش ۱ واحد بود)، سلسله اعداد جدیدی را به مجموعه های شناخته شده اضافه کرد.
که یکی از شاهکارهای بی نظیر در پیشرفت ریاضیات و البته علوم بود.
این عدد عجیب و غریب «رادیکال ۲» بود.
دست کم در طول دوران تحصیل خود در کتاب های درسی با این هندسه که بر مبنای اندازه گیری است آشنا شده ایم.
اما هندسه اقلیدسی تنها به بررسی اشکال کلاسیک موجود در طبیعت می پردازد.
در این هندسه اشکال و توابع ناهموار، آشفته و غیر کلاسیک به بهانه اینکه مهار ناپذیرند، جایی نداشتند.
هندسه فرکتال:
در سال ۱۹۹۴، طلسم یکی از تئوری های ریاضی که از سال۱۸۹۷، عنوان شده بود، شکست.
«مندلبرات» ریاضیدان لهستانی، پایه گذار هندسه جدیدی شد که به آن هندسه بدون اندازه یا هندسه فرکتالی گویند.
هندسه بدون اندازه یکی از شاخه های جدید ریاضیات است که در برابر شبیه سازی اشکال مختلف طبیعت از خود انعطاف نشان داده است.
با به کارگیری هندسه فرکتالی، افق روشنی پیش روی ریاضیدانان و محققان قرار گرفت.
واژه فراکتال به معنای سنگی است که به شکل نامنظم شکسته شده باشد.
در این نوع هندسه اشکالی مورد بررسی قرار می گیرند که بسیار نامنظم به نظر می رسند.
اما اگر با دقت به شکل نگاه کنیم متوجه می شویم که تکه های کوچک آن کم و بیش شبیه به کل شکل هستند.
به عبارتی جزء در این اشکال، نماینده ای از کل است.
به چنین اشکالی نام «خود متشابه» نیز می دهند.
اشکال فراکتالی چنان با زندگی روزمره ما گره خورده که تعجب آور است.
با کمی دقت به اطراف خودتان، می توانید بسیاری از این اشکال را بیابید.
از گل فرش زیر پای شما و گل کلم درون مغازه های میوه فروشی گرفته تا شکل کوه ها، ابرها، دانه برف و باران، شکل ریشه، تنه و برگ درختان و بالاخره شکل سرخس ها، سیاهرگ و شش و… همه اینها نمونه هایی از اشکال فرکتالی اند.
این موجودات به عنوان اصلی ترین بازیگران هندسه منتج از نظریه آشوب شناخته می شوند.
این هندسه ویژگی های منحصر به فردی دارد، که می تواند توجیه گر بسیاری از رویدادهای جهان اطراف ما باشد.
اما ویژگی اصلی که در تعریف آشوب و بالطبع هندسه آن وجود دارد، باعث می شود ما استفاده ویژه ای از این سیستم ببریم.
این روزها از فراکتالها به عنوان یکی از ابزارهای مهم در گرافیک رایانه ای نام می برند.
هنگام پیدایش این مفهوم جدید بیشترین نقش را در فشرده سازی فایلهای تصویری بازی کردند.
برای آن که درک بهتری نسبت به فراکتالها داشته باشیم، بد نیست نگاه مختصری به آشوبی بیندازیم که فراکتال ها فضای هندسی آنها را تعریف می کند.
تعریف آشوب
فصل مشترک تعاریفی که برای مفهوم آشوب ارائه شده است، تاکید بر این نکته است که آشوب دانش بررسی رفتار سیستم هایی است که اگرچه ورودی آنها قابل تعیین واندازه فراکتال ها به ما چه می گویند؟ گیری است، اما خروجی این سیستم ها ظاهری کتره ای و تصادفی دارد.
به همین دلیل بود که استوارت ریاضیدان برجسته این موضوع را مفهومی احتمالاتی می دانست.
اما چیزی نگذشت که وی تعریف خود را اصلاح کرد.
بر اساس این تعریف ، آشوب به توانایی یک الگو و مدل ساده گفته می شود که اگرچه خود این الگو هیچ نشانی از پدیده های تصادفی در خود ندارد، اما می تواند منجر به ظهور رفتارهای بسیار بی قاعده در محیط شود.
برای مثال: یک دنباله ریاضی از اعداد را در نظر بگیرید که برای توضیح یک پدیده مشخص وضع شده است.
اگرچه آشوب نظریه ای است که بر موضوعات گوناگون اجتماعی و سیاسی و اقتصادی نظر دارد، اما نیازمند زبانی برای تصویر سازی مفاهیم خود بود و این عرصه ای بود که هندسه آشوب یا فراکتالها خلق کردند.
ما در هندسه آشوب با تصاویر متفاوتی سرو کار داریم.
تصاویری که بزرگترین خصوصیات آنها این است که وقتی رسم آن را آغاز می کنیم، نمی دانیم در نهایت با چه پدیده ای روبه رو خواهیم شد.
از سوی دیگر بازخورد در آن نقش اساسی دارد.
بیایید یک فرمول کلی را اجرا کنیم!
یک مثلث متساوی الاضلاع ترسیم نمایید .
اکنون وسط ۳ضلع را معلوم کرده و از ترسیم آن ها به هم مثلث متساوی الساقین جدیدی به دست آورید .
همین بلا را بر سر ۳مثلث تشکیلشده بیرونی بکنید و این فرآیند را تا آنجا که میتوانید ادامه دهید .
شما با به کارگیری از یک ارتباط ساده که تقسیم اضلاع مثلث به نصف و اتصال آن ها به هم بود و با تکرار آن , موفق به رسم نقشه یک ساختار فراکتالی شده اید .
چنان اشکالی اجزای آفریننده هندسه دورازشوخی فراکتالی میباشند , هندسه ای که به قول مندلبرات ابزاری را برای دیدن بی نهایت در اختیار ما قرار میدهد .
این اشکال یک مشخصه بسیار عمده دارند!
کل شکل از اجزایی مشابه شکل اول تشکیل شده است.
در مثال خودمان مثلث بزرگ از مجموعه ای مثلثهای همسان به وجود آمده است.
این یکی از خصوصیات زیبای فراکتال هاست که همزمان از سوی طبیعت و فناوری به کار گرفته شده است.
اگر به یک برگ سرخس نگاه کرده باشید، می توانید متوجه تشابه اجزای مختلف آن شوید.
ساختار کل ساقه همانند یک برگ و ساختار یک برگ همانند یک جزو کوچک آن است.
اگر فرصت کردید نگاهی هم به سواحل دریاها یا تصاویر هوایی کوهستان ها و گیاهان اطرافتان بیندازید، بسرعت درخواهید یافت که در جهانی آشوب زده احاطه شده اید.
با استفاده از فرکتال ها به راحتی می توان نوار قلب بیماران را تفسیر کرد.
ممکن است روزی فرکتال ها در فهمیدن چگونگی کار مغز یا ارگانیسم بدن بسیار کارآ و مؤثر واقع شوند.
پیدا کردن پیوندهای بین علم و زندگی، آن رویی از سکه است که متاسفانه در کشور ما اصلاً به آن توجهی نمی شود.
در صورتی که پیدا کردن و بیان این پیوندها می تواند تاثیرات بسیاری بر پیشرفت علوم و عمومی کردن آن داشته باشد.
ابعاد فراکتال ها چگونه است؟
اگر هنوز از این موجودات ساده و در عین حال پیچیده هیجان زده نشده اید، این نکته را هم بشنوید.
این اجسام نه یک بعدی اند، نه دو بعدی و نه سه بعدی. این ها ابعادی کسری دارند؟
فراکتال ها دقیقا به دلیل همین خاصیت ویژه ای که دارند، توانستند روشی برای ذخیره سازی تصاویر ارائه دهند.
معمولا زمانی که یک تصویر گرافیکی قرار است به شکل یک فایل تصویری ذخیره شود، باید مشخصات هرنقطه از آن (شامل محل قرار گیری پیکسل و رنگ آن به صورت داده هایی عددی ذخیره شود.
زمانی که یک مرور گر بخواهد این فایل را برای شما به تصویر بکشد، باید بتواند این کدهای عددی را به ویژگیهای گرافیکی تبدیل کند.
مشکلی که در این کار وجود دارد، حجم بالایی از داده هاست که باید از سوی نرم افزار ضبط کننده و تولید کننده بررسی شود.
اگر بخواهیم تصویر نهایی ما کیفیتی عالی داشته باشد، نیازمند آنیم که اطلاعات هریک از نقاط تشکیل دهنده تصاویر را با دقت بالایی مشخص و ثبت کنیم.
این حجم بسیار بالایی از حافظه را به خود اختصاص می دهد.
به همین دلیل ،روشهایی برای فشرده سازی تصویر ارائه می شود.
اگر نگاهی به فایلهایی که با پسوندهای مختلف ضبط شده اند، بیندازید متوجه تفاوت فاحش حجم آنها می شوید.
برخی از این فرمتها با پذیرفتن افت کیفیت بین تصویر تولیدی و آنچه آنها ذخیره می کنند، این امکان را می دهند، که بتوانند فایلها و تصاویر خود را روی فلاپی ها و با حجم کمتر ذخیره کنند یا روی اینترنت قرار دهند.
فشرده سازی الگو های فراکتالی!
در فشرده سازی از روشهای مختلفی استفاده می شود.
در این فشرده سازی ها بر اساس برخی الگوریتم های کار آمد به جای ضبط تمام داده ها، یک پیکسل مشخصات اساسی از یک ناحیه ذخیره شود، که هنگام باز سازی تصویر نقشی اساسی تر را ایفا می کنند.
در اینجاست که روش فراکتالی اهمیت خود را نشان می دهد.
در یکی از روشهایی که در این باره مطرح شد، روش استفاده از خاصیت الگوهای فراکتال بود.
در این روش از این ویژگی اصلی فراکتال ها استفاده می شد که جزیی از یک تصویر در کل آن تکرار می شود.
یادتان نرود، شما در جهانی زندگی می کنید که براساس یافته جدید ساختاری آشوبناک دارد.
مطمئن باشید هندسه فراکتال بر بسیاری از اشکال عالم حاکم است؛حتی اگر در نگاه اول چندان آشکار نباشد.
با دقت به اطرافتان و یافتن ارتباط های ملموس بین ریاضی و زندگی می توانید از سختی ریاضی بکاهید.
برای درک بهتر فراکتال ها به یک مثال نگاهی بیندازیم:
فرض کنید تصویری از یک برگ سرخس تهیه کرده اید و قصد ذخیره کردن آن را دارید.
این برگ ساختاری کاملا فراکتالی دارد. یعنی اجزای کوچک تشکیل دهنده در ساختار بزرگ تکرار می شود.
بخشی کوچکی از یک برگ، برگ را می سازد و کنار هم قرار گرفتن برگها ساقه را تشکیل می دهد.
برای ذخیره تصویر عادی برگ، باید مشخصات میلیون ها نقطه این برگ را دانه به دانه ثبت کنیم.
اما راه دیگری هم وجود دارد!
بیایید و مشخصات تنها یکی از دانه های اصلی را ضبط کنید.
در این هنگام با اضافه کردن چند عملگر ریاضی ساده بقیه برگ را می توانید تولید کنید.
در واقع ، با در اختیار داشتن این بلوک ساختمانی و اعمال عملگرهایی چون دوران حول محورهای مختلف، بزرگ کردن یا کوچک کردن و انتقال می توان حجم تصویر ذخیره شده را به طور قابل توجهی کاهش داد.
در این روش نرم افزار نمایشگر شما هنگامی که می خواهد تصویر را بازسازی کند، باید ابتدا بلوک کوچک را شبیه سازی کرده، سپس عملگرهای ریاضی را روی آن اعمال کند، تا نتیجه نهایی حاصل شود.
به نظر می رسد این روش می تواند حجم نهایی را به شکل قابل ملاحظه ای کاهش دهد.
اما تنها یک مشکل کوچک وجود دارد و آن هم این نکته است که همه اشیای اطراف ما برگ سرخس نیستند.
بنابراین الگوهای تکرار در آنها همیشه اینقدر آشکار نیست.
باید روشی بتواند الگوهای فراکتال حاضر در یک تصویر را شناسایی و در صورت امکان آن را اعمال کند.
به همین دلیل ، معمولا روش فراکتالی با روشهای فشرده سازی دیگر همزمان به کار برده می شود؛
یعنی اگر الگوهای تکرار چندان پررنگ نبودند، بازهم فشرده سازی امکانپذیر باشدالبته زیاد نگران ناکارامدی این روش نباشید.
تئوریسین فراکتال ها:
مندلبورت در سال ۱۹۲۴ در لهستان بدنیا آمد.
او مبانی ریاضیات را از دو عموی خود فرا گرفت و در سال ۱۹۳۶ به فرانسه مهاجرت کرد.
در آنجا با کمک یکی دیگر از عموهایش که پروفسور ریاضیات بود اقامت فرانسه را گرفتند.
این مهاجرت باعث شد تا وی بیشتر به ریاضیات علاقمند شود.
اما جنگ جهانی دوم شروع شده بود و مندلبورت هراس این را داشت که نتواند به ریاضایات بپردازد.
عدم تحصیل دانشگاهی برای او یک مزیت بود.
او دیگر به پدیده های هستی به چشم یک ریاضیدان یا دانشمند آکادمیک نمی نگریست.
این طرز آموزش همچنین به وی فرصت داد تا روشهای بسیار جالبی برای استفاده از هندسه در ریاضیات ابداع کند.
نبوغ ذاتی او در هندسه باعث شد تا بتواند بسیاری از مسائل ریاضی را با روشهای هندسی حل کند.
او در سال ۱۹۴۴ فرصت آنرا یافت تا در امتحانات پلی تکنیک قبول شود.
پس از پایان تحصیلات به آمریکا رفت و در انستیتوی مطالعات پیشرفته پرینستون مشغول به فعالیت شد.
بعد از ده سال دوباره به پاریس برگشت و شروع به کار برای مرکز ملی پژوهش ها علمی فرانسه نمود .
طولی نکشید که وصلت کرد و دوباره به ایالات متحده بازگشت و در آنجا با یک کمپانی آغاز به همیاری نمود .
تئوری فراکتال ها علاوه بر زیبایی خاصی ریاضی , از روشهای کاربردی در تفسیر و مدلسازی طبیعت میباشد .
آشنایی با فرکتال ها به هنرمندان اجازه میدهد تا اثر ها هنری بسیار زیبایی را خلق نمایند .
فراکتال ها به ما چه می گویند؟
(II) مجموعه های فراکتال را نمی توان مورد استفاده قرار گیرد برای توصیف زبان هندسی سنتی، آن است که نه شرایط خاصی را برآورده منبع از نقاط، و نه آن است که برخی از مجموعه معادلات ساده است.
(III) مجموعه های فراکتال نوعی از خود شباهت ممکن است خود را مشابه و یا آماری تقریبی خود شباهت.
(IV) به طور کلی، مجموعه های فراکتال "بعد فراکتال،" به شدت بیشتر از آن مربوط به بعد توپولوژیک است.
(V) در بسیاری از موارد جالب، مجموعه های فراکتال تعریف شده توسط یک روش بسیار ساده، ممکن است تبدیل به تکرار شونده نسل.
آغاز از 1980s، "فراکتال گرم" طولانی مدت. به عنوان مفاهیم و روش های جدید فراکتال برای کشف بسیاری از مناطق شده است. موسسه آمریکایی فیزیک گورو جان ویلر گفت: در آینده هستند که آشنا نیست فراکتال، که می توان به نام از چهرههای علمی است. این نشان می دهد اهمیت فرکتال.
چینی معروف محقق پروفسور ژو Haizhong که: هندسه فراکتال نشان می دهد نه تنها زیبایی ریاضیات، اما همچنین نشان می دهد ماهیت جهان، بلکه تغییر راه مردم درک اسرار از راه طبیعت. می گویند هندسه فراکتال است واقعا توصیف هندسه طبیعت، پژوهش خود را نیز تا حد زیادی مرزهای شناخت انسان گسترش یافته است.
هندسه ی فراکتال ها بسیار محبوب در جهان امروز و تئوری های جدید فعال، رشته های جدید، به نظر می رسد تا مردم را دوباره بررسی این جهان: جهان غیر خطی، فراکتال همه جا هست. هندسه فراکتال به طوری که مردم به این درک رسیدم که نه تنها یکپارچه سازی علم و هنر، ریاضیات و وحدت هنر، زیبایی شناسی، بلکه عمیق علمی اهمیت روش شناختی آن.
در هندسه سنتی، افراد به مطالعه یک شی هندسی، همیشه در فضای اقلیدس (RN، اقلیدسی) استفاده می شود اندازه گیری تحقیق و آن که در آن حرف N نشان دهنده ابعاد فضا است که معمولا یک عدد صحیح، به ترتیب، که در آن n 1 است، 3، فضای مربوط به فضای خطی، فضای هموار و تخت، فضای سه بعدی در فضای مربوطه، ما می توانیم طول هندسه، اندازه، حجم و اندازه گیری است. اما حدود یک قرن پیش، در زمینه ریاضیات، اند در برخی از هیولا شناخته شده ریاضی (هیولاها ریاضی) چیزهایی که در زمینه اقلیدس سنتی به نظر می رسد، مردم می توانند زبان هندسی استفاده نمی ابراز طبیعت در کل یا قسمتی خود، از که، بیشتر منحنی معروف کخ فون به
هیولا ریاضی عبارتند از:
فون منحنی کخ زیر منحنی اندازه گیری شده در یک بعد طول دلخواه بی نهایت است (تصور، با در نظر گرفتن ابعاد اتمی می توان اندازه گیری)، منطقه صفر اندازه گیری شده در دو بعد
این نمودار صفر Sierpinski با منطقه مثلث است
این هیولا ریاضی ریاضی دانان برای سالهای زیادی رنج میبرند، تا قرن 20th تاسیس شد، ریاضیدان آمریکایی B. بنوا مندلبرو هندسه فراکتال (هندسه ی فراکتال) به طور کامل حل و فصل شده است. مندلبرو پیشنهاد: دلیل به همین دلیل ما می تواند زبان به توصیف این هیولا ریاضی هندسی استفاده نمی، چون ما بعد از فضا به عنوان یک عدد صحیح هستند، عدد صحیح با همان ابعاد "حاکم" اندازه گیری آن، توضیحات. در حالی که بعد باید نمی شود تنها عدد صحیح می تواند هر عدد حقیقی مثبت، تنها شی هندسه مربوط به بعد از فضا، هندسه از تمام یا بخشی برای شرح مناسب است. منحنی کخ گراف بالا به عنوان مثال، ابعاد است حدود 1.26، ما اعمال می شود همان را به عنوان حاکم 1.26 بعدی برای توصیف آن، به عنوان مثال، گرفتن منحنی قبل از بخش 1/4 به عنوان یک واحد از یک خط کش برای اندازه گیری هندسه، هندسه طول 4 است. آن را نیز به دلیل ابعاد آن در محدوده بین یک بعدی و دو بعدی، به طوری که این هندسه در طول یک بعدی بی نهایت، سطح دو بعدی صفر است.
فراکتال توسط مندلبرو ایجاد شده در سال 1975 ابداع شد، می آید از واژه لاتین "Fractus"، که در انگلیسی به معنای شکسته، نامنظم، پراکنده "اشیاء. در سال 1967 مندلبرو در ایالات متحده "مجله علوم" منتشر شده تحت عنوان: «خط ساحلی انگلستان چگونه طولانی است، عصر ساخت مقالات، مارک فراکتال تفکر ظهور جوانه آن. سال 1977 مندلبرو در کتاب پاریس فرانسه منتشر "لس objets فرکتال: forme، همکاران بعد hasard"، سال 1977، در ایالات متحده انتشار نسخه انگلیسی آن "فرکتال ها: از، احتمال، و ابعاد" ("فراکتال: شکل و ابعاد فرصت ")، در همان سال او به چاپ" هندسه فرکتال طبیعت "(" هندسه فرکتال طبیعت ")، اما این سه کتاب در جامعه و دانشگاه نبوده است تاثیر بسیار. تا سال 1982، "هندسه فرکتال طبیعت" ("هندسه فرکتال طبیعت") قبل از دریافت آنها نسخه دوم از اروپا و نگرانی های گسترده در جامعه، و به سرعت با تشکیل یک "فراکتال گرم"، این کتاب نیز در نظر گرفته محافل فراکتال فراکتال " کتاب مقدس است. "
تاریخ نژادی جانور یا گیاه
نقطه عطف مهم های فراکتال در تاریخ از
سال 1883 کانتور مجموعه ایجاد شده است
در 1895 وایرشتراس منحنی ایجاد می شود، منحنی "پیوسته در همه جا، کمی غیر قابل تشخیص" مشخص
منحنی کخ در سال 1906 ایجاد شد
Sierpinski با مثلث سال 1914 ایجاد شد
سال 1919 شرح ظهور هندسه پیچیده ای از ابعاد هاسدورف
1951 انگلیسی هیدرولوژیست هرست رود نیل از طریق سالها تحقیق، خلاصه تا قانون هرست
1967 مندلبرو در مجله "علوم" منتشر شده "چه مدت طول خط ساحلی انگلستان است."
1975 مندلبرو ایجاد "فرکتال" کلمه
مندلبرو در پاریس در سال 1975 منتشر شده، کتاب فرانسوی "له objets فرکتال: forme ها، hasard همکاران بعد"
1977 مندلبرو در ایالات متحده انگلیسی انتشارات منتشر شده "فرکتال ها: از، احتمال، و ابعاد" و "هندسه فرکتال طبیعت"
معمار ایرانی
واژه فراکتال مشتق از واژه لاتینی فراکتوس- به معنی سنگی که به شکل نامنظم شکسته خرد شده است- در سال ۱۹۷۵ برای اولین بار توسط بنوت مندل بروت مطرح شد. فراکتال ها شکل هایی هستند که بر خلاف شکل های هندسی اقلیدسی به هیچ وجه منظم نیستند. این شکل ها اولاً سر تاسر نامنظم اند، ثانیاً میزان بی نظمی آنها در همه مقیاسها یکسان است.
با ملاحظه اشکال موجود در طبیعت، مشخص می شود که هندسه اقلیدسی قادر به تبیین و تشریح اشکال پیچیده و ظاهراً بی نظم طبیعی نیست.
مندل بروت در سال ۱۹۷۵ اعلام کرده که ابرها به صورت کره نیستند، کوهها همانند مخروط نمی باشند، سواحل دریا دایره شکل نیستند، پوست درخت صاف نیست و صاعقه بصورت خط مستقیم حرکت نمی کند.
جسم فراکتال از دور ونزدیک یکسان دیده می شود. به تعبییر دیگر خودمتشابه است.
وقتی که به یک جسم فراکتال نزدیک می شویم، می بینیم که تکه های کوچکی از آن که از دور همچون دانه ها بی شکلی به نظر می رسید، بصورت جسم مشخص در می آید که شکلش کم و بیش مثل همان شکلی است که از دور دیده می شود. در طبیعت نمونه های فراوانی از فراکتال ها دیده می شود. درختان ، ابرها، کوهها، رودها، لبه سواحل دریا، و گل کلم ها اجسام فراکتال هستند بخش کوچکی از یک درخت که شاخه آن باشد شباهت به کل درخت دارد. این مثال را می توان در مورد ابرها، گل کلم، صاعقه و سایر اجسام فراکتال عنوان نمود.
بسیاری از عناصر مصنوع دست بشر نیز بصورت فراکتال می باشند. تراشه های سلیکان، منحنی نوسانات بازار بورس، رشد و گسترش شهرها و بالاخره مثلث سرپینسکی را می توان در این مورد مثال زد.
در علم ریاضی فراکتال یک شکل مهندسی است که پیچیده است ودارای جزئیات مشابه در ساختار خود در هر مقیاسی است.
میزان بی نظمی در آن از دور و نزدیک به یک میزان است. مثلث سرپینسکی یک مثلث متساوی الاضلاع است که نقاط وسط سرضلع آن به یکدیگر متصل شده اند. اگر این عمل در داخل مثلث های متساوی الاضلاع جدید تا بی نهایت ادامه یابد، همواره مثلث هایی حاصل می شوند که مشابه مثلث اول هستند.
( وحید قبادیان، مبانی و مفاهیم در معماری معاصر غرب صص ۱۶۶-۱۶۷)
تعریف فراکتال
هندسه ی اقلیدسی - احجام کامل کره ها و هرم ها و مکعب ها واستوانه ها- بهترین راه نشان دادن عناصر طبیعی نیستند . ابرها و کوه ها و خط ساحلی و تنه ی درختان همه با احجام اقلیدسی در تضاد هستند و نه صاف بلکه ناهموار هستند و این بی نظمی را در مقیاس های کوچک نیز به ارمغان می آورند که یکی از مهمترین خصوصیات فراکتال ها همین است .
این بدین معناست که هندسه ی فراکتال بر خلاف هندسه ی اقلیدسی روش بهتری را برای توضیح و ایجاد پدیده هایی همانند طبیعت است .زبانی که این هندسه به وسیله ی آن بیان می شود الگوریتم نام دارد که با اشیا مرکب می توانند به فرمولها و قوانین ساده تری ترجمه و خلاصه شوند.
فرکتال از کلمه ی لاتین فراکتوس به معنی سنگی نامنظم شکسته و خرد شده است، گرفته شده است . اولین بار فرکتال را دکتر ماندلبروت طی نظریه ای که برای مسائل جهان هستی ارائه کرد و در این نظریه عنوان کرد که جهان هستی بعدی مابین ۲۳/۱-۳۴/۱۱ دارد و تمامی پدیده های طبیعی به نوعی فرکتالهایی می باشند در جهان هستی که برای ما ناشناخته اند.
فراکتال ها انواع عناصری هستند که فرم فضایی آنها صاف نیست .بنابراین “نامرتب ” نامیده شده اند و این نامنظمی آنها به طور هندسی در راستای مقیاسهای گوناگون در داخل هرم تکرار می شوند .هر چیز طبیعی در اطراف ما در اصل نوعی فراکتال است . به این سبب که خطوط صاف و پلانها فقط در دنیای ایده آل ریاضی وجود دارد .در کنار این تئوری هر سیستم که بتواند به صورت هندسی متصور و تحلیل شود می تواند یک فرکتال باشد .جهان در فرم فیزیکی ( مادی ) کلی خود پر هرج و مرج ،ناممتد و نامنظم است اما در پس این اولین ذهنیت و گمان یک نوع دستوری نهفته است که منظم و دارای ترکیبی واضح است . بهترین راه برای تعریف یک فرکتال توجه به صفتها و نشانه های آن است یک فرکتال ” نامنظم ” است . این بدان معنی است که در آن هیچ قسمتی صاف نیست . فرکتال ” خود مشابه ” است و این بدین معنی است که ” اجزا ” شبیه کل هستند .
فراکتال ها به وسیله ی ” تکرار ” توسعه می یابند که به این معنی است که تغییرشکل مکرراً ایجاد شده و وابسته به موقعیت شروع است . خصوصیت دیگر آن این است که فراکتال ” مرکب ” است . اما با این حال می توان آن را به وسیله ی الگوریتم های ساده نشان داد و همچنین بدون معنی نیز نیست فراکتال ها به ما چه می گویند؟ که در پس عناصر نامرتب طبیعی یک رشته قوانین موجود است .
Benoît B. Mandelbrot (born 20 November 1924) is a French mathematician, best known as the father of fractal geometry. He is Sterling Professor of Mathematical Sciences, Emeritus at Yale University; IBM Fellow Emeritus at the Thomas J. Watson Research Center; and Battelle Fellow at the Pacific Northwest National Laboratory. He was born in Poland. His family moved to France when he was a child, and he was educated in France. He is a dual French and American citizen. Mandelbrot now lives and works in the United States.
موزه گوگنهایم در بیلبائو
فرکتال (برخال) چیست؟
ما فرکتالها را هر روز میبینیم: درختها ، کوهها، پراکنده شدن برگهای پاییزی روی زمین ، ساحل دریا و …
حالا به این تعریف دقت کنید: فراکتال تصویر هندسی چند جزیی است که میتوان آن را به تکه هایی تقسیم کرد که انگار هر تکه یک کپی از ” کل ” تصویر است . به سختی بتوان باور کرد که چیزی مانند فراکتالها بتواند اینقدر پیچیده و سخت باشد و در عالی ترین سطوح ریاضی به کار رود و در عین حال بتوان به تصویر یک سرگرمی خوب به آن نگاه کرد. اگر بخواهیم بترسانیمتان میتوانیم بگوییم که هندسه فراکتالی حرکت اشکال در فضا را ثبت میکند و یا ناهمواری دنیا و انرژی و تغییرات دینامیک آن را نشان میدهد ! اما راستش را بخواهید فراکتال چیز ساده ای است به سادگی ابرها یا شعله های آتش.
واژه فرکتال از ریشه ای یونانی به معنای ” تکه تکه شده ” و”بخش بخش” آمده است و به نحوی تعریف ریاضی اش را در خود دارد.
اگر بخواهیم از دید کلی به بحث فرکتال نگاه کنیم آن را می توان به ۳ دسته تقسیم بندی کرد :
۱- هندسه فرکتال : در این قسمت از دید ریاضی به فرکتال نگاه می شود که بیشتر مورد توجه ریاضی دان ها قرار گرفته اما پایه های قسمت های بعدی نیز می باشد ، و تا با عناصر اصلی فرکتال و چگونگی ایجاد این فرم آشنا نشویم نمی توان فرم های مختلف و حجم های مختلف را شناسایی کرد.
۲- فرم فرکتال : قسمت دوم این مقاله است ، با توجه به اینکه ،محصول هندسه فرکتال فرمی است که دقیقاً آن مشخصه های هندسی مربوطه را دارد . در این بخش فرم هایی همچون فرم های درخت ، فرم های مندلبرت ، فرمهای موجود در طبیعت ، ایجاد فرم های رندوم (Random fractal) ، خود متشابهی (self similarity) ، فرکتال در نقاشی ( آثار نقاشانی چون جکسون پالاک ) و … مورد بررسی قرار خواهد گرفت .
۳- حجم فرکتال (فرکتال در معماری): نتیجه فرم های مختلف می تواند به یک اثر معماری منتج شود لذا در این بخش حجم های فرکتالی و آثار معماری مطرح می شود .
اشکال فرکتالی چنان با زندگی روزمره ما گره خورده که بسیار جالب است. با کمی دقت به اطراف خود، می توان بسیاری از این اشکال را یافت. از گل فرش زیر پای شما و گل کلم درون مغازه های میوه فروشی گرفته تا شکل کوه ها، ابرها، دانه برف و باران، شکل ریشه، تنه و برگ درختان و بالاخره شکل سرخس ها، سیاهرگ و حتی می توان از این هم فراتر رفت : سطح کره ماه ، منظومه شمسی و ستارگان .
البته در بخش فرم های فرکتال این موضوع بیشتر مشهود است به طوری که بسیاری از فرمهای خلقت دارای ساختاری فرکتال هستند .
این روزها از فراکتالها به عنوان یکی از ابزارهای مهم در گرافیک رایانه ای نیز نام می برند، اما هنگام پیدایش این مفهوم جدید بیشترین نقش را در فشرده سازی فایلهای تصویری بازی می کنند.
فرکتال از منظر هندسی
هندسه فرکتالی یا هندسه فرکتال ها پدیده ایست که چندی پیش پا به دنیای ریاضیات گذاشت.
واژه فرکتال در سال ۱۹۷۶ توسط ریاضیدان لهستانی به نام بنوئیت مندلبرات وارد دنیای ریاضیات شد.
او در سال ۱۹۸۷ پرفسوری خود را در رشته ریاضیات گرفت.
مندلبرات وقتی که بر روی تحقیقی پیرامون طول سواحل انگلیس مطالعه می نمود به این نتیجه رسید که هر گاه با مقیاس بزرگ این طول اندازه گرفته شود بیشتر از زمانی است که مقیاس کوچکتر باشد.
از لحاظ واژه مندلبرات انتخاب اصطلاح فرکتال (fractal) را از واژه لاتین fractus یا fractum (به معنی شکسته ) گرفت تا بر ماهیت قطعه قطعه شونده که یکی از مشخصه های اصلی این فرم است ،تاکید داشته باشد .
فرهنگستان زبان هم واژه برخال را تصویب کرده و همچنین برای واژه فرکتالی واژه برخالی را تصویب کرده است.
واژه فرکتال به معنای سنگی است که به شکل نامنظم شکسته شده باشد.
فرکتال از دید هندسی به شیئی گویند که دارای سه ویژگی زیر باشد:
۱-اول اینکه دارای خاصیت خود متشابهی باشد یا به تعبیر دیگر self-similar باشد.
۲-در مقیاس خرد بسیار پیچیده باشد.
۳-بعد آن یک عدد صحیح نباشد (مثلاً ۱/۵).
برای درک بهتر نسبت به مشخصات بالا در فرم هندسی ، بد نیست نمونه ای که شاید تا کنون با آن برخورد کرده باشید مطرح شود :
تصویر بالا ( یک کبوتر ) یک فرم هندسی است که دقیقاً با تعاریفی که در تعریف فرکتال بیان شد، منطبق است یعنی هم دارای خاصیت خود متشابهی و پیچیدگی در مقیاس خرد و نیز عدم داشتن بعد صحیح . تصویر بالا دارای بعدی بین عدد ۲ و ۳ است.
حال به بررسی هر یک در زیر پرداخته شده :
خاصیت خود متشابهی فرکتا لها
شیئی را دارای خاصیت خود متشابهی می گوییم: هر گاه قسمت هایی از آن با یک مقیاس معلوم ، یک نمونه از کل شیئی باشد.
ساده ترین مثال برای یک شیئ خود متشابه در طبیعت گل کلم است که هر قطعهی کوچک گل کلم متشابه قطعه بزرگی از آن است .
همین طور درخت کاج یک شیئ خود متشابه است ،چرا که هر یک از شاخه های آن خیلی شبیه یک درخت کاج است ولی در مقیاس بسیار کوچکتر .همچنین در مورد برگ سرخس نیز چنین خاصیتی وجود دارد.
رشته کوه ها ، پشته های ابر ، مسیر رودخانه ها و خطوط ساحلی نیز همگی مثالهایی از یک ساختمان خود متشابه هستند.
نمونه ای از خود متشابهی در شکل زیر نیز دیده می شود.
فراکتال شکل هندسی پیچیده است که دارای جزییات مشابه در ساختار خود در مقیاسهای متفاوت می باشد و بی نظمی در آن از دور و نزدیک به یک اندازه است .
واژه فراکتال مشتق گرفته شده از واژه لاتینی فراکتوس به معنای سنگ است که به شکل نا منظم شکسته و خرد شده .این واژه برای اولین بار توسط بنوت مندل بروت مطرح شد .
جسم فراکتال از دوز و نزدیک یکسان دیده می شود .مثلا وقتی به یک کوه نگاه می کنیم شکلی شبیه به یک مخروط می بینیم که روی آن مخروطهای کوچکتر و بی نظمی دیده می شود ولی وقتی نزدیک می شویم همین مخروطهای کوچک شبیه کوه هستند و یا شاخه های یک درخت شبیه خود درخت هستند .البته در طبیعت نمونه های اجسام فراکتال فراوان است مثلا ابرها -رودها -سرخس ها و حتی گل کلم از اجسام فراکتال است .و اگر به ساخته های دست بشر هم نگاه کنیم تراشه های سیلیکان و یا مثلث سرپینسکی نیز فراکتال هستند . و در معماری همیشه نباید نیاز بشر را هندسه اقلیدسی تامین کند .گسترش شهرها نمونه آشکاری از فراکتال است.
خصوصیات اشکال فرکتال
- اشکال اقلیدسی با استفاده از توابع ایستا تولید می شوند ولی اشکال فرکتال با فرآیندهای پویا تولید می شوند.( فرآیندهای پویا, فرآیندهایی هستند که دارای حافظه می باشند و رفتار آنها به گذشته بستگی دارد.)
- اشکال فرکتال دارای خاصیت خود همانندی است. طول این اشیا بی نهایت است که در فضای محدود, محصور شده اند.
- مجموعه های فرکتال, از زیر مجموعه هایی تشکیل شده اند که این زیر مجموعه ها شبیه مجموعه های بزرگتر هستند.
- هندسه فرکتال دارای ساختارهای ظرفیتی بالاست ولی ظرفیت اطلاعاتی اشیای اقلیدسی بسیار محدود و حاوی اطلاعات تکراری است.
- هندسه فرکتال, بیان ریاضی از معماری طبیعت است.
- هر فرآیند تکراری و پویا باعث ایجاد ساختارهای پیچیده فرکتال نمی شود. مکانیزم تولید چنین ساختارهای پویایی, آشوب است. در حقیقت, فرکتال تصویر ریاضی از آشوب است.
رابطه فراکتال و معماری
مطالعه هندسه باید به طراح کمک کند به درک بهتری از جریان جزئیات در پیرامون ما و جهان طبیعی دست یابد.
خصوصیت فراکتالی یک ترکیب معماری در تسلسل جالب جزئیات است. این تسلسل برای حفظ جذابیت معماری لازم است. هنگامی که شخص به یک ساختمان نزدیک و سپس به آن وارد می شود همیشه باید مقیاس کوچکتر دیگری همراه با جزئیات جذاب وجود داشته باشد تا معنای کلی ترکیب را بیان کند که این یک ایده فراکتال است.
انسانها در روزگار قدیم که در طبیعت می زیستند و مانند انسان دوره مدرن, با طبیعت بیگانه نبودند, معماریشان با نظم طبیعت بود. آنها به این دلیل که در طبیعت رشد میافتند, ضمیر ناخودآگاهشان نیز با نظم طبیعت- یعنی با نظم فراکتال- رشد میافت, در نتیجه مصنوعاتش نیز دارای نطم فراکتال می بود.
فراکتال در معماری معاصر
به دنبال بیگانگی انسان معاصر با طبیعت و دور شدن ساخته هایش از تشابه با ساختارهای طبیعت, معماران معاصر به دنبال نمود دادن ساختار فراکتال طبیعت در آثارشان هستند. هر چند که این هنوز آغاز راه است ولی ارتباطی جدیدی در زمینه طبیعت و معماری معاصر را نشان میدهد. ارتباطی که انسان مدرن آن را فراموش کرده بود.
معماری هنر و دانش طراحی بناها و سایر ساختارهای کالبدیست. تعاریف جامع تر، بیشتر معماری را شامل طراحی تمامی محیط مصنوع از طراحی شهری و طراحی منظر تا طراحی خرد جزییات ساختمانی و حتی طراحی مبلمان میدانند.
طراحی معماری در اصل استفاده خلاقانه از توده، فضا، بافت، نور، سایه، مصالح، برنامه و عناصر برنامه ریزی مانند هزینه، ساخت و فناوری است به منظور دستیابی به اهداف زیباشناختی، عملکردی و اغلب هنری. این تعریف، معماری رااز طراحی مهندسی که استفاده خلاقانه از مصالح و فرمها با بهره گیری از ریاضیات و قواعد علمی است، متمایز میکند.
آثار معماری به عنوان نمادهای فرهنگی، سیاسی و اجتماعی یک کشور شناخته میشوند. تمدنهای تاریخی نخست از طریق همین آثار معماری شناخته میشوند. ساختمانهایی چون تخت جمشید، هرمهای سهگانه مصر، کالاسیوم روم از جمله چنین آثاری بهشمار میآیند. آثاری که پیونددهنده مهم خودآگاهیهای اجتماعی بودهاند. شهرها، مذاهب و فرهنگها از طریق همین یادوارهها خود را میشناسانند.
بر گرفته از سایت چهارچوب های پنهان
حسین نیکخواه خیبری مهندس معمار -عکاس
دیدگاه شما